Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.10.434733

ABSTRACT

The spike protein (S) of SARS-CoV-2 has been observed in three distinct pre-fusion conformations: locked, closed and open. Of these, the locked conformation was not previously observed for SARS-CoV-1 S and its function remains poorly understood. Here we engineered a SARS-CoV-2 S protein construct "S-R/x3" to arrest SARS-CoV-2 spikes in the locked conformation by a disulfide bond. Using this construct we determined high-resolution structures revealing two distinct locked states, with or without the D614G substitution that has become fixed in the globally circulating SARS-CoV-2 strains. The D614G mutation induces a structural change in domain D from locked-1 to locked-2 conformation to alter spike dynamics, promoting transition into the closed conformation from which opening of the receptor binding domain is permitted. The transition from locked to closed conformations is additionally promoted by a change from low to neutral pH. We propose that the locked conformations of S are present in the acidic cellular compartments where virus is assembled and egresses. In this model, release of the virion into the neutral pH extracellular space would favour transition to the closed form which itself can stochastically transition into the open form. The S-R/x3 construct provides a tool for the further structural and functional characterization of the locked conformations of S, as well as how sequence changes might alter S assembly and regulation of receptor binding domain dynamics.


Subject(s)
Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.14.426695

ABSTRACT

The majority of SARS-CoV-2 vaccines in use or in advanced clinical development are based on the viral spike protein (S) as their immunogen. S is present on virions as pre-fusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described that act against both open and closed conformations. The long-term success of vaccination strategies will depend upon inducing antibodies that provide long-lasting broad immunity against evolving, circulating SARS-CoV-2 strains, while avoiding the risk of antibody dependent enhancement as observed with other Coronavirus vaccines. Here we have assessed the results of immunization in a mouse model using an S protein trimer that is arrested in the closed state to prevent exposure of the receptor binding site and therefore interaction with the receptor. We compared this with a range of other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induce a long-lived, strongly neutralizing antibody response as well as T-cell responses. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralising responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, virus-inhibiting immune responses than open spikes, and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. Together with their improved stability and storage properties we suggest that closed spikes may be a valuable component of refined, next-generation vaccines.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.27.174979

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions are surrounded by a lipid bilayer from which spike (S) protein trimers protrude. Heavily glycosylated S trimers bind the ACE2 receptor and mediate entry of virions into target cells. S exhibits extensive conformational flexibility: it modulates the exposure of its receptor binding site and later undergoes complete structural rearrangement to drive fusion of viral and cellular membranes. The structures and conformations of soluble, overexpressed, purified S proteins have been studied in detail using cryo-electron microscopy. The structure and distribution of S on the virion surface, however, has not been characterised. Here we applied cryo-electron microscopy and tomography to image intact SARS-CoV-2 virions, determining the high-resolution structure, conformational flexibility and distributions of S trimers in situ on the virion surface. These results provide a basis for understanding the conformations of S present on the virion, and for studying their interactions with neutralizing antibodies.

4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.15.152835

ABSTRACT

The spike (S) protein of SARS-CoV-2 mediates receptor binding and cell entry and is the dominant target of the immune system. S exhibits substantial conformational flexibility. It transitions from closed to open conformations to expose its receptor binding site, and subsequently from prefusion to postfusion conformations to mediate fusion of viral and cellular membranes. S protein derivatives are components of vaccine candidates and diagnostic assays, as well as tools for research into the biology and immunology of SARS-CoV-2. Here we have designed mutations in S which allow production of thermostable, crosslinked, S protein trimers that are trapped in the closed, pre-fusion, state. We have determined the structures of crosslinked and non-crosslinked proteins, identifying two distinct closed conformations of the S trimer. We demonstrate that the designed, thermostable, closed S trimer can be used in serological assays. This protein has potential applications as a reagent for serology, virology and as an immunogen.

SELECTION OF CITATIONS
SEARCH DETAIL